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Abstract  
• 1 We consider a model field theory consisting of two Nambu-Jona-Lasinio spin ~ fields 

interacting via a coupling f (~  1Y~zT5 ~. 1)(~2~/uTs ~ 2) and which is therefore invariant 
under the two symmetries ~O 1 (x) -+ e za 17 s ~ 1 (x) and ¢ 2 (x) -+ el% ~/5 ~ 2 (x). We look for 
solutions in which these symmetries are spontaneously broken by giving the fermions 
non-zero masses. Each of the two pairs of axial-vector vertex functions in'the theory 
satisfy two coupled integral equations, which are solved in the 'chain approximation'. 
We find that all four vertex functions have the same singularity structure, in particular a 
pole at q2 = 0 corresponding to a massless pseudoscalar Nambu-Goldstone boson, and 
another pole corresponding to an axial-vector boson whose mass is cut-off dependent, 
but which for a certain range of values o f f  2 is a stable particle. By considering the 
coupling of the strings of nucleon-antinucleon psuedoscalar 'bubbles' which generate 
the massless Nambu-Goldstone bosons associated with fermions 1 and 2, we show 
explicitly that there is only one massless Nambu-Goldstone boson in the theory. 

1. Introduction 

The concep t  o f  spontaneous ly  b roken  s y m m e t r y ~  (or to  give it  its m o d e r n  
name,  N a m b u - G o l d s t o n e  realisation o f  symmet ry )  in q u a n t u m  field theory  
emerged in the late 1950s wi th  the w o r k  of  Heisenberg and his coworkers  
(Diirr  et al., 1959, 1961; Heisenberg,  1966) on non-l inear  relativistic quan tum 
field theory ,  and wi th  the BCS theory  o f  superconduc t iv i ty  (Bardeen et  al., 
1957; Bogol iubov et al., 1959; Valat in,  1958;  Bogol iubov,  I 959 ;  Nambu ,  1960). 
The basic idea is that  even though  the Lagrangian is invariant  under  a certain 

+ Royal Society European Science Exchange Programme Fellow. Present address: 
Department of Theoretical Physics, Queen Mary College, Mile End Road, London, 
E1 4NS, En~and. 

For a review of this topic, see Grib et al. (1970). 

Copyright © 1975 Plenum Publishing Company Limited. No part of this publication may 
be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, microfilming, recording or otherwise, without 
written permission of Plenum Publishing Company Limited. 

103 



104 D.J. ALMOND 

symmetry, the ground state (vacuum), and therefore the solutions of the 
equations of motion, may not be. The work of Goldstone (1961) and Nambu 
and Jona-Lasinio (1961a) on spontaneous symmetry breakdown in model 
field theories, in which they found that the phenomenon is accompanied by 
the appearance of zero mass bosons, led to the conjecture (Goldstone, t 961) 
that this is always the case. It was indeed subsequently proved (Goldstone 
et aI., 1962; Btudman & Klein, 1963) that spontaneous symmetry breakdown 
in quantum field theory always leads to the presence of zero mass bosons. In 
non-relativistic quantum field theory, the Goldstone theorem gave a unified 
view of such phenomena as phonons in a crystal, magnons (spin waves) in a 
ferromagnet, etc., but its application to the relativistic case was fraught 
with an essential difficulty. The point is that because of Lorentz invariance 
the masstess Nambu-Goldstone bosons must have zero spin,t and although we 
see plenty of broken symmetries in particle physics, which we might like to 
try and describe by spontaneous symmetry breakdown, we do not see any 
massless spin-zero particles. So ever since the Goldstone theorem was proved, 
the theoretical efforts have been devoted to finding ways to evade it. 

At the present time, there are two ways of doing this. The first is to intro- 
duce explicit symmetry-breaking terms into the Lagrangian, which give masses 
to the Nambu-Gotdstone bosons (Nambu & Jona-Lasinio, 1961b; Glashow & 
Weinberg, 1968). The second mechanism is rather more subtle. It has its origins 
in a remark by Schwinger (1962) that the vector field which is introduced into 
a Lagrangian to ensure gauge invariance of the second kind need not have zero 
mass if the vacuum fluctuations of the matter current, jU(x), which is the 
source of AU(x), satisfy a certain criterion. Anderson (1963) then showed that 
Schwinger's criterion was equivalent to the requirement that the matter current, 
before the introduction of AU(x), contain a contribution from mass zero, and 
furthermore that a non-relativistic plasma is an example of such a theory. 
Relativistic examples of such theories, in which the zero-mass matter field is a 
Nambu-Goldstone boson, were given by Higgs (1964a, 1964b, 1966) and 
Englert & Brout (1964). This combining, as it were, of the massless spin-zero 
Nambu-Goldstone boson and the massless vector gauge field to give a massive 
vector field is known as the Higgs mechanism.~ An important ingredient in 
these theories is the presence in the Lagrangian of  a mixing term between 
the Nambu-Goldstone boson and the massless field, e.g. in the Higgs model 
there is a term§ - e X A ,  ~"~2 (or - e X A ,  a"0 if the complex scalar field is 
written in polar coordinates) where A"(x) is the vector gauge field and ~2(x) 
is the massless Nambu-Goldstone boson, and in the Lagrangian density 

t The situation is actually not quite as straightforward as we imply here, see Guralnik 
& Hagen (1968, 1969) and references therein. 

$ The Higgs mechanism, or rather its generalisation to non-abelian gauge groups 
(Kibble, 1967) has been made the basis of a unified theory of weak and electromagnetic 
interactions by Weinberg (1967, 1971) and Salam (1968). For a review of the recent 
extensive work on this subject see Lee (1972). Llewellyn Smith (1973), Riazuddin (1972), 
and Zumino (1972). 

§ Throughout this paper we will use the metric, -r-matrix, and Feynman rules con- 
ventions of Bjorken & Drell (1964, 1965). 
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describing a plasma there is a term ½Oo9 U. R where ¢(x) is the Coulomb 
potential and R(x) is the displacement field of the electron gas (i.e. the 
phonon field). 

Suppose we have a theory with two spontaneously broken symmetries and 
therefore a priori two massless Nambu-Goldstone bosons. We now ask the 
question: is it possible, by allowing mixing between these two particles, to 
eliminate one or both of ,them from the theory with the possible appearance 
of massive particles in their place? It is the purpose of this paper to show that 
there are models in which, because of mixing, it is possible to have two 
spontaneously broken symmetries, but with only massless Nambu-Goldstone 
boson. 

i A F 1 1  ( k  2 )  + • - ,  + . . . . . .  + . . . .  

i A F 2 2 ( k 2  } . . . .  + . . . . . . .  + . . . . . . . . . .  + . . . .  

i A F 1 2 ( k 2  ) = • - -  + • - = - - - - - -  + - . . . . - ~ - -  = --_-- e - = . - -  + . . . .  

Figure 1 . -The three propagators A)7 (k2), Ak,~(k2), and 2x~2(k2 ). An unbroken line 
denotes particle 1, a dashed line denotes particle 2, and a blob denotes the vertex. 

It is, of course, very easy to get rid of massless particles by mixing. Con- 
sider the Lagrangian density 

"-~QL°= ½(~tPl) 2 + ½(~tfl2) 2 +gq01tp 2 (1.1) 

where the coupling constant g is real, positive, with the dimensions of mass 
squared. The Feynman rules for this theory are: 

(a) a factor i/k 2 for each internal l-line of four-momentum kU; 
(b) a factor i/k 2 for each internal 2-line of four-momentum k** ; 
(c) a factor/g for each vertex where a l-line joins a 2-line. 

It is therefore straightforward to calculate the three full propagators 
k'F,, (k2), A'F==(k2), and A~,=(k 2) depicted in Fig. 1, for example: 

iA~,= (k 2) = ig + (ig)3 + (ig)5 + . . .  

i.e. 

similarly: 

_ - g  

(k 3) (k:)  = _ g2 (1.2a) 

A '  " 2 k2 
Fn ( k )  = (k2)2 _ g 2  (1 .2b)  

k 2 
g2) - (k2)2 _ g2 (1.ec)  
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The propagators have simple poles at k 2 = -+ [g [ so instead of  two massless 
particles, we have a tardyont  of  mass-squared [g[ and a tachyont  of  mass- 
squared - [g [. In fact the particle content of the theory could have been 
seen more easily by making the transformation to normal modes 
q~ = @1 + 92)/X,/2, ~ = (~1 - ~2)/X/2 in the Lagrangian (1.1). So the theory 
eliminates the massless particles, but  only at the expense of  introducing a 
tachyon, and since these particles have not been seen (Kreisler, 1973), this 
model is not of  much practical importance at the present time.:~ 

A more interesting model is that described by the Lagrangian density 

~ =  ~(0~1) 2 + ½(0~) 2 +g(0~0.  (0~2) (1.3) 

where the coupling constant g is real positive or negative (but not equal to 
+-I),§ and dimensionless. The first point to note about this Lagrangian is 
that it is invariant under the two symmetriesl] ~l(X) -* ¢1(x) + Xl, 
92(x) -~ 92(x) + X2 which are spontaneously broken since they change the 
vacuum expectation value of the fields 91(x) and ~2(x) respectively. The 
Feynman rules for the theory are: 

(a) a factor i/k 2 for each internal l-line of  four-momentum k#; 
(b) a f a c t o r  i/k 2 for each internal 2-line of  four-momentum kt~; 
(c) a factor igk 2 for each vertex where a l-line of  momentum k t* turns 

into a 2-line of momentum k v. 
The full propagators A~u(k2), A~2~(k2), and A~=(k 2) of Fig. 1 can be easily, 
calcu!ated in this model too, and we find 

7 g  (1.4a) 
a ~ - ( ~ 2 )  = (1 - g~)k  ~ 

1 (1.4b) kF ' (k2)  = (1 - gZ)k2 

I 
A~'='(k2) = (1 - g2)k2 (I .4c) 

so that the propagators have only a single pole at k 2 = 0. 

t A tardyon is a particle with positive on-mass-shell mass-squared, which therefore 
always has a velocity tess than that  o f  light (when on-shell). A tachyon field (q)(x)) system 
negative on-mass-shell mass-squared, which therefore always has a velocity greater than 
that o f  light (when on-shell) (Bilaniuk & Sudarshan, 1969). 

z) Suppose, however, that we add a term -(h/16)(sol  -+ ~o2)4(with h > 0) f o r g  ~e 0, to 
the Lagrangian (1.1). Then for g > 0 say, £~ becomes 

g 2 _ h ~ 4  ½(a®): + ½(~)2 + ~.(® _ 2 )  
z ;  

and we can have spontaneous symmetry breakdown o f  the tachyon field (*(x))  system 
to the ground state given by (0 [ * (x )  [ 0 ) = (g/h)  1/2, from which the field ~ ' (x)  = 
q~(x) - (g/h)  1/2 excites interacting particles of  mass-squared 2g (Goldstone, 1961) 

1 + 2 • " § In the case when g = -+1,d¢ just becomes equal to :~(a(so 1 _ ~o2) ) , Le. a free mass less 
spin-zero field, 

II The constant field displacement,  and its connection with the  Goldstone theorem 
have been studied by  Hetlman & Roman (1966). 
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It is obvious that the pole in each of the three propagators corresponds to 
the same physical particle,~ the propaga to r  A~2(k  2) differing from A~v(k 2) 
and A'F::(k 2) only by the factors o - - -  and © respectively, both of 
which are equal to -g.  The fields ~Ol(X ) and ~2(x) therefore excite the same 
massless particle, and we have a model in which one massless Nambu-Goldstone 
boson is associated with two spontaneously broken symmetlqes. 

The model described by equation (1.3) is, of  course, rather elementary, and 
the remainder of this paper is devoted to a more realistic model in which there 
are two spontaneously broken symmetries but mixing leads to only one mass- 
less Nambu-Goldstone boson. It is a model in which two massless spin-½ fields, 

1 and if2 each have an interaction of the Nambu-Jona-Lasinio type, and 
also interact via a mixing term of the form f(~-lTu'y s ~ 1)(~27u3,s~02), the 
Lagrangian density being invariant under two chiral symmetries ~ l(X) 
eic~:: ~ l(x) and ~2(x) -+ e ic~'? ~2(x) which we allow to be spontaneously 
broken by non-zero masses for the fields ~ 1 and ~2, which will henceforth 
be referred to as 'nucleons'. We show that the strings of pseudoscatar nucleon 
anti-nucleon bubbles, which, in the absence of the mixing term, would each 
give a massless pseudoscalar boson, mix via couplings of the form q, /q2  and 
(gUy_ qUqV/q2) which satisfy (qU/q2)(qu/q2) = 1/q~ and (gU; _ qUqO/q2) x 
(goU _ qoqV/qZ) = (gUy _ q,qV/qZ) respectively, leading to a single pseudoscalar 
pole at q2 = 0. 

The layout of the paper is as follows. In Section 2, we review those aspects 
of the Nambu-Jona-Lasinio model which are relevant to our work. Section 2A 
is devoted to the self-consistent mass equation, and Section 2B to the evalua- 
tion of 'bubble' graphs and their summation to give the various mesons. In 
particular, we argue that the conventional (i.e. quantum electrodynamics) 
expression for the vector bubble used by Nambu & Jona-Lasinio (1961a, 
1961b) is incorrect for this model, since the quadratically divergent part is 
unambiguously given by the self-consistent mass equation. In Section 2C, we 
write down the integral equation for the axial-vector vertex function, and 
solve it in the chain approximation in the two cases when the kernel is given 
by (a)just the pseudoscalar coupling and (b) the pseudoscalar coupling and 

t It is actually instructive to study the theory described by the Lagrangian density 
2 2 

1 2 /~1 2 ~2 2 
= ½(~:,)2 + ~(o:2) - -z- :, - _--:2 +g(a:,). (0:2) 

2 2 

which has propagators 

AjTt2(k2 ) = _ g k 2 / ( 1  _ g 2 ) ( k  2 _ 2 ) ( k  2 _ . . 2 ) ,  

A~ , l ( k2  ) = (k 2 -- . 22 ) / ( 1  - - g 2 ) ( k 2  _/.~+2) (k2 - .u__ 2) 

and 

where 
~x~,22(k 2) -- (k 2 - .12)/(t _ g2) (k2 _ g +2)(k2 _ #_2) 

.+2_ =[ ( .12+  2)±tq~1.--2_.22.2~ +4g2 12 22)1/2]/2(1_g2) 

first letting ~22 ~ O, and then ,12 -+ O. 
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the axial-vector coupling. Section 3 is devoted to the model described in the 
previous paragraph: in Section3A we discuss the self.consistent mass equations 
for the two fermions and show that the mixing term in the Lagrangian gives 
no contribution to these equations in lowest order. In Section 3B, we write 
down the pair of coupled integral equations satisfied by the axial-vector 
vertex functions lPlUS(p + ½q, p - ½q) and 1p~S(p + ½q, p _ ½q) for particles 
t and 2 respectively to couple to a particle 1-antiparticle 1 pair, and then solve 
them in the chain approximation. We f'md that the two vertex functions, and 
also the pair 2plus( p + ½q, p - ½q) and 2puS(p + ½q, p _ ½q) for coupling to 
a particle 2-antiparticle 2 pair, all have the same singularity structure (see 
equations (3.9) and (3.10)), in particular a pole at q2 = 0 corresponding to a 
massless pseudoscalar boson, and another pole corresponding to an axial- 
vector boson, whose mass is cut-off dependent, but which for small values of 
f2  is an unstable particle, for medium values o f f  2 is a stable particle, and for 
large values o f f  = is a tachyon. In Section 3C, we explicitly show, by con- 
sidering the coupling of the strings of pseudoscalar nucleon-antinucleon 
bubbles of particles 1 and 2, that there is only one massless pseudoscalar 
Nambu-Goldstone boson in the ttieory. 

In Appendix A we list some of the formulae used in evaluating bubble 
graphs and putting them into the form of dispersion integrals, whilst in 
Appendix B we show that the form of the vector bubble used by Nambu and 
Jona-Lasinio does not lead to sensible results for the singularities of the form- 
factors of the axial-vector vertex functions. 

2. The Nambu-Jona-Lasinio Model 

The Nambu-Jona-Lasinio model (Nambu & Jona-Lasinio, 1961a; Vaks & 
Larkin, 1961) consists of a masstess spin-½ field with a non-linear four-fermion 
self-interaction described by the Lagrangian density 

~q= i~{bff + g((~-ff)2 _ (~-3/sq,)2) =_ iff~ff +,.~taint (2.1) 

(where g is a real positive coupling constant with the dimensions of mass -2) 
. . . .  i s 

which is lnvanant under the chlral transformation if(x) -+ e ~ ~(x) as well as 
under the gauge transformation of the first kind ~(x) -+ ei#t~(x) where a and 
/3 are arbitrary constants. The theory is a model of the strong interactions in 
which the nucleon field ~ acquires mass by spontaneous breakdow n of chiral 
invariance, and the mesons are generated by strings of nucleon-antinucleon 
bubbles. 

The interaction in equation (2.1) generates two types of four-fermion 
vertices, viz. direct and crossed (see Fig. 2), but a Fierz transformation (see 
Good (1955), Section VIII) on the interaction Lagrangian gives 

~ in t  = ~o-CP~nt -= -~((~-%0)  2 - (fT"Y s ~)z) (2.2) 

i.e. a sum of vector and axial-vector interactions, so we can take the interaction 
t o be ~ain t + ~-qTF t with the understanding that we consider only the direct 
diagrams of Fig. 2a. 
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Figure 2.-The four-fermion interaction showing (a) direct and (b) crossed vertices. 

The theory is, of course, unrenormalisable, and the loop integrals which 
occur beyond lowest order have to be given a cut-off to make them finite. 

A. The Feynman Rules for the Theory with Non-Zero Mass, and the Self- 
Consistent Mass Equation 

Nambu and Jona-Lasinio looked for solutions to the theory in which the 
chiral invariance is spontaneously broken by a non-zero fermion mass m i.e. 
for a ground state 1~2 (m)) such that ( ~2(m)[ ~'~ ]~2 (m)) q: 0. The condition for 
this is easily found in lowest order and is given by a generalisation of the 
Hartree-Fock procedure (Nambu, 1960; Bogoliubov, 1959). The Lagrangian 
density is written as 

f =  ~(i~ - m)~ + ~ in t  +~a iFnt + m~-~ (2.3) 
and the first two terms are treated as the free-field term, and the last three 
terms are treated as interaction terms. The Feynman rules are: 

(a) a factor 2ig(1)(1) for each scalar vertex; 
(b) a factor -2ig(TS)(7 s) for each pseudoscalar vertex; 
(c) a factor -ig(TU)(Tu) for each vextor vertex; 
(d) a factor ig(3,uTs)(Tu7 s) for each axial-vector vertex; 
(e) a factor im for each mass term; 
(f) a factor iSF(P, m) = i/(p -- m + ie) for each internal fermion line; 
(g) a factor - 1 for each closed fermion loop. 

On requiring that the lowest order corrections to the propagator should cancel 
(see Fig. 3) and noting that the pseudoscalar, vector, and axial-vector terms 
give zero contribution, we find 

8igm f d4p 
m = (~)4 j p-T- m 2 + ie (2.4) 

The solution m = 0 corresponds to the 'ordinary' solution of equation (2.I). 
The other solution is 

gig [" d4p 
l = ~ J p2 m2 + ie 

(2.5) 

and is the condition for the occurrence of a spontaneously broken chiral 
symmetry solution of equation (2.1) with mass m and is called the self- 

© 
,,. = ,.  + -. ~ ~ + - _ _ 

F i g u r e  3 . - T h e  s e l f - c o n s i s t e n t  m a s s  e q u a t i o n .  T h e  l i n e s  d e n o t e  a f e r m i o n  o f  m a s s  m .  
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consistent mass equation. The integral in equation (2.5) is quadratically 
divergent, but on cutting off  with a large mass A 2 it can be explicitly evaluated 
(Nambu & Jona-Lasinio, 1961a) to give the condition on g for the mass m 
solution to exist, viz. gA 2 > 27r ~, but we will not  reproduce this here. Nambu 
a nd Jona-Lasinio also showed that the spontaneous symmetry breakdown 
solution is, in fact, the stable one since the vacuum I g2 (m)) has a lower energy 
than the 'ordinary'  vacuum. 

B. Mesons from Strings o f  Bubbles 
To discover what mesons are predicted by the theory, Nambu and Jona- 

Lasinio looked for bound states in nucleon-antinucleon scattering, or, 
equivalently, for exchanged particles in nucleon-nucleon scattering. The 
analogue of  the 'ladder approximation' in nucleon-antinucleon scattering 
in this model is the 'chain approximation', i.e. the iteration of  a nucleon- 
antinucleon closed loop (see Fig. 4) in which the lines have mass m. They 

Figure 4.-The nucleon-antinucleon loop JFP'(q)- 

ascribed significance only to poles below q2 = 4m 2. We define the function 
J r r ' ( q )  where F and F'  are Dirac matrices by t  (see Fig. 4): 

~" T r ( ( i o -  ½ q + m ) P ( p +  ½#+m)r ' )dap (2.6) J 

In the case where F and F'  are the unit matrix we obtain, on using equation 
(A.4) of  Appendix A: 

4 t" d4p 
Jss(q) = ~ [ - 2(q 2 - 4m2)I(q 2) 

p2 S m 2 .1 
(2.7) 

which, on using the self-consistent mass equation (2.5), gives 

Jss(q) = 2igJss(q) = 1 - 4ig(q 2 - 4m2)I(q 2) 

So the sum of scalar bubbles$ 

1 1 
2igl 1 - J s s ( q )  1 = 1 2(q2 _ 4m2)i(q2 ) 1 

(2.8) 

(2.9) 

"~ Henceforth, an ie in each propagator denominator will be understood. 
:~ The 7-matrix (in this case the unit matrix) on each side of the sums of bubbles is 

understood to be sandwiched between appropriate Dirac spinors. 
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has a pole at q2 = 4m 2 corresponding to a scalar meson. WNen I" = P '  = 3 ,s we 
obtain, on using equation (A.4): 

4 f d4p Jpp(q)  = 2qZI(q 2) - ~ p 2 - - m  2 (2.10) 

and on using the self-consistent mass equation (2.5) we obtain 

Jpp(q)  = - 2igJpp(q) = 1 - 4igq2I(q 2) (2.11) 

So the sum of  pseudoscalar bubbles 

1 1 
• 2 •  5 .;,s = _,ys ys (2.12) 

1 -- Jpp(q)  2q2I(q  2) 

has a pole at q2 = 0, which is just the massless pseudoscalar meson predicted 
by the Goldstone theorem.? 

The case of  the vector bubble is rather more complicated than the previous 
two examples. With P = T ~, F '  = 7 v, we find 

Y~Vv(q) = f (_4p2 + q2 + 4m2)g~V + 8p,pV _ 2qUqV d4p (5;;, (2.t3) 

which on using equation (A.7) gives: 

J~(q) = f (_4p2(_(.pp__ ~ - -  ~ + 1 - - - 7 ~ - - ' m - ~ +  q2 + 4m2)gUV + 2p2g~V_ 2qUqV d4p 
. p - ½ q ) -  )((p :~q)-  ) (2tO ~ 

+ A(q2,  m2)(qUqV _ ¼qZg~,) (2.14) 

where A(q 2, m 2) is some function of  q2 and m 2. Then current conservation, 
quY~Uv(q) = 0 gives: 

3q 2 , -  2 2- f ( _ 2 p 2 _ q 2 + 4 m  2) d4p (2.15) 
A tq , rn ) = - ((p _ ½q)2 _ m2) ( (p  + ½q)Z _ m s) (21r)4 

t Umezawa (1965a, 1965b) has established an interesting connection between the 
invariance of the original Lagrangian (2.1) under chiral transformations of the fermion 
field and the invariance of the final effective Lagrangian under constant field displacements 
of the massless pseudoscalar field. This concept of dynamical rearrangement of symmetry 
has been applied to the Goldstone model by Nakagawa et al. (1966) and to the BCS 
model by Leplae & Umezawa (1966). A review of this and more recent work has been 
given by Umezawa (1973). 
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SO, on substituting equation (2.15) into equation (2.t4) and using equation 
(A.4) we Fred 

qUqV 1 2 + + 2m2)i(q2)) P 2 7 ~ 2  (q2 

(2.16) 

and, on using the self-consistent mass equation (2.5), we obtain 

,uv .~uv {gUy q~qV~(l 4ig: 2 )) Jvv(q) = -igJvv(q) = ~, - --q-~] - "-~ (q + 2m2)Z(q 2 

- :Jv(q  2) (2.17) 

The sum of vector bubbles becomes, using the fact that ( g U y  qUqV/q2) is 
idempotent, 

-igvU(gu.+(g,,~ - -  quqv ~ ~ (Jv(qZ))n) : n= I 

7" 1 Jv(q 2) 
= - ig 1 - Jv(q2 ) 7 u - q ( 1  -- Jv(q2))q2 q) (2.18) 

where the second term is zero because of current conservation. It is seen that, 
unlike the scalar and pseudoscalar cases, the pole in the scattering amplitude 
does not occur straightforwardly. To exhibit it, we use the dispersive forms 
for I(q 2) and the self-consistent mass equation, given by equations (A. 1 0) 
and (A.15) respectively, and find 

a~ 

2 g 4m2/Ic2) 1/2 ( (q2 + 2m2)t Jv(q ) = ~  f ( I -  14 ~'57_-~ : die2 

4 m  = 

(2.19a) 

A = 

1 - Jv(q 2) - 
4 m  2 

(1 -- 4m2/K2) 1/2 (2 -- (q2K_2 +_ - q22m2)l] dK 2 (2.19b) 

The integrand of equation (2.19b) has a zero at q2 = 2(K2 _ m2)/3, so 
1/(1 - Jr(q2)) has a pole somewhere in the range 2m 2 ~< q2 ~< 2(A 2_ m2)/3 
which for sufficiently small A 2 will lie below q2 = 4m 2, and will correspond to 
a stable vector meson. Note that the result which we obtain here is different 
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from that of Nambu & Jona-Lasinio (1961a, equation (4.15)) who find that 
the mass squared of the vector meson is greater than 8m2/3. This is because 
they apply the additional condition, familiar from quantum electrodynamics, 
that Jv(O) = 0. This seems to us to be incorrect here for the following reasons, 
Firstly, in quantum electrodynamics, the condition is applied in order to 
guarantee that the photon has zero renormalised mass in perturbation theory; 
this requirement does not occur in this theory. Secondly, the quadratically 
divergent part of Jv(q 2) is uniquely given by self-consistent mass equations 
(2.5) and (A. 15). In fact Jv(O) is just 

A 2 A 2 

Jv(O)=l-~2 (f(1-4rn2fic2)l/2dt¢2+2m 2 f (1-4m2/K2) d• 2) 
4 m  2 4rn 2 

(2.20) 

which is a positive definite quantity. So in the Nambu-Jona-Lasinio model 
with the particular cut-off procedure used, it appears to be incorrect to require 
that Jv(O) = 0. In fact, when we come to consider the axial-vector vertex 
functions of the model to be discussed in Section 3B, we shall find that, when 
we use the Nambu-Jona-Lasinio form for Jv(q2), we do not obtain sensible 
physical results. 

We next evaluate the axial-vector bubble given by equation (2.6) with 
P = 7u7 s, P' = 7v3 's, and find 

= Jvv(q) -- 8m2gUVI(q 2) 
~ # P  i ", and, on using equation (2.16) for vvtq), we obtain 

(2.21) 

J ~ ( q ) : ~  q2 ]-(-~)4 p2 m2 _ _  + (q2 _ 4rn2)t(q2)) 

qU_qU q2 8m2I(q 2) (2.22) 

and, on using the self-consistent mass equation (2.5), we obtain 

j~vA(q)=ig~UnVA(q)=(gUV_ q2 ] ( _ _ l  + q u q u ]  -3 ~(q2 4m2)i(q2) ) 

qUqZ, 
- -  ~ Sigm2I(q2) 

=__ (gUy qUqU)__ _ qUqV q2 JA(q2)---~ JA(q 2) (2.23) 
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SO that JA (q2) = _ (jv_(q2) + j~ (q2)). On summing the axial vector bubbles, 
we find 

(g~z guy q/~qv~ +quqv ~ n) 3"vTS ig'g"7 s + (JA (q2))n ~ ( _ : )  (q2)) 
q]°=, 7.=, 

1 --,:A(q 2) (1 --:A(q2))O +L~ (q2)) e r s  (2.24) 

We note that the second term has a pole at q2 = 0 corresponding to the 
exchange of the pseudoscalar meson. To discover whether or not 1/(1 - JA(q2)~ 
has a pole, we write the denominator as a dispersion integral, using equations 
(2.23), (A.10), and (A.15): 

A ~ 
g f (I--4m2/tc2)l/2(K2-4m2)dtc2 :A (q2) - - 

127r z .J ~ - g - - ~  (2.25a) 
4 m  2 

1 ..... JA(q2) - g (1 - -4m2/g2)  1/2 34  7~-_--£7-1& 2 
12zr2 (2.25b) 

4 m  2 

The integrand of  equation (2.25b) has a zero at q2 = 4(g2 _ m2)/3, so 
1/(I - JA (q2)) has a pole somewhere in the range 4m 2 < q2 ~< 4(A 2 _ m2)/3, 
which does not correspond to a stable particle. The expression (I + J~ (q2)), 
when written in dispersive form using equations (2.23), (A.10), and (A.15), 
gives: 

A 2 

l + j~4(q2)= g f (l _4rn2ficZ)l/2 (1 2mZ ' ~ 4rr--- 5 - t~--qz J dt~ ~ (2.26) 

am * 

and the integrand has a zero at q2 = Kz _ 2m 2, and so 1/(1 + J~4 (q2)) has a 
pole somewhere in the range 2rn 2 ~< q2 ~< A 2 _ 2m 2, which we might think 
shows that there is a massive pseudoscalart meson in the theory. However, we 
have so far not mentioned the fact that, because J~'A (q) is non-zero, there will 
be mixing between the strings of pseudoscalar and axial-vector bubbles. In 
Section 2C, we shall take this into consideration when studying the axial- 
vector vertex function, and shall find that the pole I/(1 + J~ (q2)) is not, in 
fact, present. The explicit expression for J~'a (q) is: 

( Tr ((p-½q + m)TS(p + ½q + m)'y"~ s) d4p 
(q) - ~  ~ ~ ~ - ~  ~ +--}q~2-~2) (2rr)----a = 4mq"[(q 2) .I 

(2.27) 

Pseudoscalar since the wavefunction is~-r s. 
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Note also that 

1" Tr ((p - ½~+ m)'),uTs (p + ½q + m)7 s) d4p 
~ ( q )  

J (-Cz 

= --4rnqUI(q :) 

All the other bubbles for which F v~ F '  are zero. 

(2.28) 

C The Axial Vector Vertex Function 
The first point to note about the axial vector vertex function I'US(p + ½q, 

p - ½q) is that because of axial current conservation and Lorentz invariance 
it must satisfy (Nambu & Jona-Lasinio, 1961a): 

~(p + l q ) r U s ( p  + ½q,p - ½q)u(p - ½q) 

= f(q2)ff-(p + ½q) (Tu 2~qU)~/Su(P - ½q) (2.29) 

where the pole at q2 = 0 is due to the massless pseudoscalar Nambu-Goldstone 
boson, and f(q 2) is a form factor. 

= y~ty/~ 

/4"p - 'Aq J 'p-  '/2q 

+ 

Figure 5,-The integral equation for 14t5 (p + ½q, p - ½q). 

The integral equation for FUS (p + ½q , p l q - :r ) is shown in Fig. 5, where 
K(p, p', q) is the nucleon-antinucleon scattering kernel. The analogue of the 
'ladder approximation' in this case is to replace the full propagators by free 
field propagator of  mass m, and to approximate K by the four-fermion inter- 
action. On replacing K by just the pseudoscalar interaction we obtain for the 
integral equation: 

r .S fp  + ½q, p _ ½q) = ~.~s + 2ig,yS f Tr (TSiSy(p ' + ½q, m) x 

d~' FUS(p' + ½q,p'-  ½q)iSF(p'-- ½ q , r n ) ) ~  (2.30) 

The most general ansatz for pUS(p + ½q, p _ ½q) satisfying equation (2.29) is 

2mqU] s 2 (3' u 
,t / 

(2.31) 



116 D . J .  ALMOND 

and on substituting into equation (2.30), using the expressions for ]pp(q) and 
J~.4 (q) viz. equations (2.10) and (2.27), and the self-consistent mass equation 
(2.5), we obtain 

2mq u _s,~,_2, - - ~ ] 7  tq )=7u3 ' s -  - ~  3' ~tq ) ( T p  q 2 ) . r r w ) + ( ~ u  qqU~ 5G:-2~ 2mq ~ s ~ , 2 ,  

(2.32) 
which tells us that G(q 2) = 0 and F(q 2) = 1. So pus(p + ½q,p _ ½q) is just 

I' 2mq u~ s 
pUS(p + ½q, p _ ½q) = b u _  -2"$ 17 (2.33) 

\ q / 

so that in this approximation the form factor f(q 2) in equation (2.29) is unity. 
In fact the equation (2.30) on iteration simply generates all possible strings of 
pseudoscalar bubbles, giving the pole at q2 = 0 as the only singularity. 

When we use both the pseudoscalar and axial-vector interactions in K the 
integral equation becomes: 

FUS(p + ½q, P - ½q) 

1 t = 7u7 s + 2ig7 s ~ Tr(TSiSF(P ' + ½q, rn)FUS(p'+ ~q,p  - ½q) 

d4p ' 
x iSF(P'-- ½q, m)) ( ~ ) 4  -- igTv75 ~ Tr(TUTsisF(p ' + ½q, m)x 

u S  t + 1 ' t . ' 1 d4p~ 
r (p ~q, p - ~q) tSF(P -- gq, m)) ( ~ ) 4  (2.34) 

and on using equations (2.5), (2. lO), (2.23), and (2.27), we find 

(Tu 2mqU] 5 - ,  z, + 7SG(q 2) 

_ 2mq ~ ~ ~ [~. qqU'~ s j  2 F 2 + G 2 ~ ~U~  q2 7OF(q~)+ ~ , u - ~ T ] 7  A(q ) ( ( q )  (q) )  (2.35) 

giving us: 

JA (q2) (2.36) F(q 2) = 1 G(qZ) = 1 - JA (q2) 

so between nucleon spinors, pus(/) + ½q, p _ ½q) becomes 

f(p + ½q)pUS(p + ½q,p _ ½q)ff(p _ ½q) 

=ff(P+½q)(3 'u 2mqU' s }7 u~p--~q)l - t \ l_J~(q2)) l  (2.37) 
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and we have shown that there is no pole from 1/(1 + J~ (q~)) as we mentioned 
at the end of  Section 2B. 

3. The Model 

We now consider a field theory consisting of  two Nambu-Jona-Lasinio 
fields-~ ~ 1 and ff z interacting via an axial-vector coupling: 

~ =  i f l ~ l  + g 1 ( ( ~ - 1 ~  1) 2 --  ( ~ 1 ' ) ' 5 ~ I )  2) 

+ i G O r 2  + g2((~2~2) ~ - ( G v s  ~2) 2) 

+ f(Gv"~ s~ 1)(Gv, v s~ 5) (3.1) 

where g t  and g2 are real positive coupling constants with the dimensions of  
mass -z, and f is a real coupling constant with dimension mass -2. The Lagranglan 
density (3.1) is invariant under the two chiral transformations 

l(x) -+ e ie'v5 ~ a(x) (3.2) 

~2(x)-" ei~zv'~(x) 
where ~1 and e~ 2 are arbitrary constants, and is also invariant under the gauge 
transformations of  the first kind ~ l(X) -~ e i~1 ~ 1 (x) and ~ 2 (x) -~ e its2 ~ z (x) 
where/31 and/~2 are arbitrary constants. 

A Fierz transformation~ on the scalar and pseudoscalar self-interactions of  
each particle allows them to be written as a sum of  vector and axial vector 
terms as in equation (2.2). As in Section 2, we shall use the sum of  these inter- 
actions, with the understanding that we consider only the direct diagrams of  
Fig. 2a. 

A. The Feynman Rules for the Theory with Non-Zero Fermion Masses, and 
the Self-Consisten t Mass Equations 

We now look for solutions to the theory, described by the Lagrangian 
density (3.1) for which the chiral symmetries (3.2) are spontaneously broken 
by non-zero fermion masses m I and rn z. The Feynman rules for such a theory 

J" Suzuki (1963) has considered a model in which two Nambu-Jona-Lasinio fields 
interact via a mixing term. His model, in which g 1 =g2 and the mixing term is 
((~-~ qJ 1)(~-2 ~ 2) -s(~-l~ 'stp a)(~-2@ ~2))is invariant under the single chiral transforma- 
tion ¢ l(X) ~ eia7 7~ l(X), ~2(x) ~ eia~ ~ t~2(x) and the permutation tp 1 ~ ~P2, not under 
the chiral transformations (3.2). 

:~ A Fierz transformation on the mixing term yields 

= (~-1~ 2)(~-2~ 9 1) -- (~-I')'5~/2)(~-2"/$~ I) + ½(~-1"}'/~¢ 2)(~-2VUt~ 1) 

SO that there are likely to be bound state of  ;2  and 21 pairs in the theory too. However 
these effects are crucially dependent upon the sign o f f ,  as well as its magnitude, and can 
be treated separately from the mixing which depends only on f2 ,  and is the concern of  
this paper. 
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are the same as those given in Section 2A, except that g and m are replaced by  
ga and m a (where a = 1, 2), and that there is an extra rule: viz. a factor 
if('y#Ts)(')'#7 5) at each vertex where particles 1 and 2 interact via the coupling 
Y(~Iv#Ts~ ~)(~27~ 5 ~ 9- 

The self-consistent mass equation for, say, particle 1, in lowest order (one- 
loop-approximation) is again given by  Fig. 3, but there is now an extra term 
from a particle 2 loop, -ifTu'y 5 fd4p Tr (@'yhiSl~(p, rn2))/(27r) 4 which is, 
however, zero. So the condition for a solution ~ 1 which spontaneously breaks 
the chirat symmetries (3.2) with a mass m 1, is just given by equation (2.5): 

Big1 r d'~p 

Similarly the condition for a solution ~ 2 which spontaneously breaks the 
chiral symmetries (3.2) with a mass m2 is just 

_ 8ig2 ( d4p 
1 (27r)4 J p2 _ rn~ (3.3b) 

The dispersive form of  the self-consistent mass equation (A.15) and the dis- 
persion integral (A.10) associated with particles 1 and 2, are cut of f  at masses 
A12 and A22 respectively. 

B. The Ax&l-Vector Vertex Functions 
Since the mixing term in equation (3.1) is axial-vector, and recalling that  

we mentioned in Section 2B that there is no coupling between axial-vector 
and scalar or vector coupling, i.e. J ~  (q) = 0 = Y ~  (q), then we can 
immediately say that each fermion field ffa has associated with it a scalar 
boson of mass 2 4ma 2 and a vector boson with mass # v  a in the range~ 
2ma 2 <~ p2 a <~ 2(A~z 2 - rna2)/3. 

However, since J~A(q) ¢ 0 it is clear that the pseudoscalar and axial-vector 
coupling of the two particles will get jumbled, for example a stream of pseudo- 
scalar bubbles of  particle 1 can couple to a stream of pseudoscalar bubbles of  
particle 2 via the termf(~lTu3, s ~ 1)(~23'u3 ,s ~2). In fact, each particle a will 
now have two axial-vector vertex functions bFa~s corresponding to coupling 
to a bb pair where b = 1, 2 (see Fig. 6). These vertex functions will satisfy two 
pairs of  coupled integral equations, the pair for 1 p~S (p + ½q, p _ ½q) and 

Figure 6.-The vertex function bFataS (p + ½q, p -- ½q), where a and b are equal to 1 or 2. 
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1 l?~S (p + ½q, p _ ½q) being shown in Fig. 7. Clearly, our task now is to solve 
these equations in the 'chain approximation' and by looking at the singularities 
of  the vertex functions, ascertain what pseudoscatar and axial-vector mesons 
appear in the theory. 

\ \ 

= y + 

/ / / 
/ . r  

Figure 7.-The coupled integral equations for I Vl~s(p + ½q, p - ½q) and 1F~S(p + ½q, 
p -- ½q). An unbroken line denotes particle 1 and a dashed line denotes particle 2. 

Replacing the full propagators S)(k ,  ma) by free-field propagators SF(.k, ma), 
the kernels K n and K22 by sums of pseudoscalar and axial-vector four-fermion 
interactions as in Section 2C, and the kernels K12 and K21 by if(Tu75)(Tu75) 
we obtain for the equations shown in Fig. 7: 

gl l  P~S(p + ½q,p - ½q) 

= g,TU7 s + 2igle7 s f Tr ('ysiSF( p' + ½q, ma) 1V~5(p ' + ½q, p '  - ½q) 

t m d4p' 
x iSF( p '  -- ~q, 1)) ~ - -  ig127u75f Tr("[v"[sisF(p ' + ½q, ml)  I x 

d4p ' 
PlUS(p ' + ½q,p' - ½q)iSF( p '  -- ½q, ml))  ~ -- ifZ3,vTS 

x ~ Tr(v"vSiSF(P ' + ½q, m2)lr~S(p ' + ½q,p'  - ½q) 

d4p 
x iSF( p ' -- ½q, m2)) (270 4 

f '  F~ 5 (p + ½q, P -- ½q) 

(3.4a) 

: fTuTs + 2igor75 f Tr(75iSF(P, + ½q, m2)~r~Sfp, + ½ q , p , _  lq) 

1~ m "" d4P' 
x iSF(p' -- 7q, 2)) ~ - -  ig~fTv7 s f Tr (~,vTs iSF(p' + ½q, m2) 

d4p ' 
x 1F~s (p'+ ½q, p' - ½q)iSy( p'  -- ½q, m z))(-~)4--ifgl%,75 f Tr (TuTsi x 

SF(p'  +½q, ml) lF~S(p ' +½q, p '  1-~iS ~ ' d4-'  --~q) F t P - - ~ q , m ~ ) ) ~ ( 3 . 4 b )  
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We make the same ansatz for the vertex functions as in equation (2.31) 

@u 2m l qU ~ s lpfS(p+½q,p-lq)= ~-$ ] 7  1Fl(q2) 

7 2m2qU~ S ,F~s(p+½q,p_½q)= u_ ._~ ]7 1F2(q2) 

+ (7" eq"]7 'Ox(q 2) 
- q2 ] (3.5a) 

7" eq"] s + - ~ T ] 3 '  1G2(q2) 
(3.5b) 

On substituting equations (3.5) into equations (3.4),and using equations 
(2.5), (2.10), (2.23), and (2.27) for particles I and 2, we obtain 

@~ 2mlqU'~ 5 117. ,. 2., -  itq ,+(7" s -- 7 ] ' 7  1C1(q2) 

= 7uTs _ 2m lq u 7s lF1(q2 ) + u _ q2 q2 )7 :A~(q 2)(1F1(q2) + 1Gl(q2)) 

+ J&(q2)(1F2(q2 ) + 1G2(qZ)) (3.6a) 
gig2 

(Tu 2m2qtSl 5 / u qqU~ s ~- -]7 'F2(q2) -!" [7 -- 7 ] 7  162(q2) 

+ jA,(qZ)(1F1 (q2) + 1Gl(q2)) ] 

The equations (3.6) immediately give: 

1Fl(q2) = 1 

1F=(q2) = I 

(3.6b) 

(3.7a) 
(3.7b) 

and on substituting equations (3.7) into equations (3.6), a little algebra 
enables to solve for 1Gl(q2 ) and 1G2(q2): 

g1~2 f2 jA~(q2)+ f'; jA2(q2)_ (l_g_~)jA~(q2)jA2(q2 ) 
1Gl(qz ) - 

f2 
(3.Sa) 
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f 2  2 2 
JA,(q2) + JA~(q2) - (1--~lg2)JAt(q )JA2(q ) 

1G2(q2 ) = (3.8b) 
f2 

1-" JA,(qZ)-- dA2(qZ) + (1--glg~)JAl(q2)JA~(q2) 

Putting together equations (3.5), (3.7), and (3.8), we find that when the 
external particle lines are on the mass-shell we have:t 

1 , _½q)ul(  p ½q) /~I(P ÷ ½q)lp~S(p + 7q P 

\ q" / 

\ gig2] - I  
X . . . . . .  ~ 

--JAl(q2)--JA~(q2)+(l--glg2)JA~(q2)JA~(q2)J (3.9a) 

t22(p + ½q)lp~S(p ÷ ½q,p -- ½q)u2(P -- ½q) 

( 7 . _  2m2q~t = Et=(p + ½q) q: ] TUu:(.P - ½q) 

x (  1 ) (3.9b) 

1 -- JA,(q 2) -- JA2(q 2) + 1 - :A1(q2)JA2(q 2) 
gag2 

An exactly similar procedure, starting with the pair of coupled integral 
equations for =1~ s and 2Fus gives finally: 
t71(p + ½q)2F~s (p + ½q,p - ½q)ul( p - ½q) 

= "/5//1(/)  -- ½q) 

-J&(q2)-JA~(qe)+ 1 -  |JA~(q2)J&(q 2) 
glg2]  / 

The condition f2/glg 2 = 1 corresponds to the special case when the three axial- 
vector interactions are mediated by a single axial-vector meson in the limit of  large meson 
mass. 
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t72( p + ½q)2F~S(p + ½q, P - ½q)u2( p - ½q) 

[ . 2m2qU~ . 
= ff2(P + ½q)[7 ~'- "---q'f--]')"U2(P - ½q) 

\ glg2 (3.10b) 
X . . . . . .  7 

-- JA ~ (q2) -- JA~(q2) + (1-- ~ t  JA~ (q2)JA~(q2)/ 
g~g2] / 

We therefore see that the four axial-vector vertex functions aFUS, 1F2US, 2P~s, 
2 5 and !-'~ all nave the same singularity structure, viz. the pole at q2 = 0 

associated with a pseudoscalar meson, and the denominator of the form- 
factors which will be investigated shortly. This strongly suggests, but does not 
actually prove, that the poles at qZ = 0 all come from the same pseudoscalar 
meson, i.e. that although there are two spontaneously broken symmetries (3.2), 
there is only one massless Nambu-Goldstone boson in the theory. This will be 
shown explicitly in Section 3C. 

We now turn our attention to the denominator D(q 2) of the four form- 
factors: 

D(q2) = (1 --JA,(qZ))(1 --SA,(q2))--f2JA~(q2)jA,(q 2) (3.1 t) 
gig2 

2 The dispersive form for JAa(q ) is given by equation (2.25a) and the disper- 
sive form for (1 - JAa(q2)) iS given by equation (2.25b). On substituting into 
equation (3.11) we obtain: 

( f 2(1-4m12/tc12)l/2(4(t~12-m12)-3qZ)) 
D(qZ) = 144zr 4gig2 dt~ 1 g 12 _ q2 

4m~ 

4.,: 
At  2 

1447r4 gxg2 K 12 - q2 
4rn~ 

A~ 
( f d/~2z (1 - 4m 22/t~]_q 2 t j -Lz )  1/2(4m 22-K 22)) 

4m; 

(3.12) 
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It is clear that D(q 2) has branch cuts from 4m 12 to A12 and from 4m2 to Aft. 
To see if it has any zeros as a function of q2, we combine the products of 
integrals in equation (3.12) into a double integral: 

A12 A~ f ~ (1--4m12/K12)l/2(1--4m?/g?)l/2 
D(q2) = glg2 dKl2 dr22 

144zr 4 (r 12 -- q2)(K 2 - q2) 
4m? 4m~ 

[(4(K12 -m12) - 3 q 2 ) ( e ( t ~ 2 - m 2 ) -  3q2)] 

x f2 [ -- g,g2 (4m12- t~'2)(4rn2 -t~2) l (3.13) 

so that the integrand will be zero when the expressions within square brackets 
is zero: 

(4 (K 12 - m 12) - 3q 2) (4 (K 2 _ m 2)  _ 3qZ) = f z  (4m 12 - K 12) (4m 2 - t~ 2 2) 
gig2 (3.14) 

It is, of course, trivial to solve this equation for q2 explicitly. It is, however, 
more illuminating to plot the left-hand side and right-hand side on a graph, 
assuming without loss of generality that m 12 < m 2 (see Fig. 8). It is seen that 
as fZ/glg2 increases from zero to infinity, for fixed K 12 and K2, the lower zero 
moves down the q2-axis from 4(K a 2 -  m12)/3 to _oo. So the form factors, 
whose denominator D(q 2) is given by equation (3.13), will have a pole corre- 
sponding to an axial-vector particle which, for small values of f  2/g lg2 is an 
unstable particle, for medium values off2/glg2 is a stable particle, and for 
large values off2/gtg2 is a tachyon.~ The actual mass of the particle for a 

~--LH,S. 

I • 

Figure 8.-Plot of equation (3.14) showing a solution in the range 0 < q2 <: 4m12" 

"~ The presence of a tachyon in the limit of large coupling is, of course, a well-known 
feature of mixing theories. It occurs for example in the theory (Deo, 1961) described 
by 2 2 

/~ 1 2 ~t2 2 

~= ~ ( ~ ) 2  + ½(a~)~ - T  ~' _ T ~ + g ~ 2  
wheng 2 >/~12bt2 2, For g2 ~ / / t 2#? ,  this theory becomes equivalent to that described by 
equation (1.1). 
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given value off2/glg2 is, of  course, dependent upon the cut-off masses A12 
and A 2.  The higher zero corresponds to an unstable particle, whose mass 
increases as f2/glg 2 increases. When f2/glg 2 = 0 the two are at q2 = 
4(•a 2 - ma2)/3 as we would expect from Section 2B and 2C (see equation 
(2.37) and the discussion following equation (2.25)), and lp~s and 213~s have 
form factors 1/( I - J.4,(q2)) and 1/( 1 - JA ~(q 2)) respectively, on the fermion 
mass-shell. We ha;ce attempted to evaluate the integrals in equation (3.12) 
using the substitution tG 2 = (Ya + ma2)2/ya but this procedure yields a rather 
complicated expression for D(q2) which is not  very informative. 

As mentioned in Section 2B, when we use Nambu and Jona-Lasinio's dis- 
persion integral for JA (q2) (i.e. with Jva(O ) = 0, the expression which we 
obtain for D(q 2) does ~ot appear to make physical sense when we consider 
the behaviour of  the zeros of  D(q 2) for different values off2/glg2. This is 
discussed in Appendix B. 

C Coupling of  Strings of Pseudoscalar Bubbles 
We saw in Sections 2B and 2C that, in the case of  a single Nambu-Jona- 

Lasinio field, the Nambu-Goldstone boson associated with spontaneous break- 

Prr~(q)  = r -  . r '= r O r ' +  r @ r ' +  r ~ r ' +  .... 

- : 73 Prr~(q) = r- : : :~.r '= r~, r ' +  _,r...s,,, ,-'r'+ r ~" r ' +  .... 

Figure 9.-The functions Pr r ,  1 (q) and PFI,'2(q) for r r '  = AA, AP, or PA. For r r '  = PP, 
there is an extra no-loop term in the sums. 

down of chiral symmetry is the massless pseudoscalar meson generated by the 
sum of  all possible strings of  pseudoscalar bubbles Jpp(q). In this section we 
shall study what happens when the strings of  pseudoscalar bubbles associated 
with particles 1 and 2 are allowed to mix via the te rmf( f f lTu75  ff 1) x 
(~27u3,sff2) in the Lagrangian (3.1), in the same spirit as we discussed the 
mixing Lagrangians (1.1) and (1.3) in the Introduction. 

We first of  all define Prr~,(q) (where a = 1, 2) as the sum of all possible 
strings of  pseudoscalar bubbles of  particle a with F and F' at ends (see Fig. 9). 
We find for P~Aa(q) that: 

e~a(q)  = J~4a(q) -- 2iga Y~Pa(q)Y~Aa(q) (3.15) 
t 

which, on using equations (2.11), (2.23), (2.27), and (2.28), gives 

JAa (q 2) P~4a(q) = - i  [ g~v -- qU qV| 
q2 ] ga \ 

(3.16) 
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which has a pole at q2 = 0.9 (Note, incidentally, that Pf~X=(q) which consists 
of  a stream of particle 2 pseudoscalar bubbles, gives a contribution to 
g l a , ~  + ½q)~p~,S(p + ½q, p _ ½q)ul( p _ ½q) of  the form (7 u - 2m,qU/q 2) x 
7S(f2/g2)JA,(qZ).) Similarly, we find for P~a(q) 

p~pa(q)= J~Pa(q) (3.17) 
1 -- JPPa(q) 

which, on using equations (2.11) and (2.28), gives 

e a(q) _ i m W '  (3.IS) gaq 2 

Furthmore,  since Jl~Aa(q) = ju - APa(q), we find 

P~Aa(q)= imaqU (3.19) gaq 2 

Both Pi~/' (q) and P~,Aa(q ) have a pole at q2 = 0. The sum of pseudoscalar 
bubblesflppa(q) is equal to 1/(1 - JePa(q)) which, by equation (2.11), gives 

i 
Pppa (q ) = - 4gaq2 ia(q2 ) (3.20) 

and it too has a pole at q2 = O. 
We now consider what happens when we connect these strings of bubbles 

with the coupling f(~-iTu3 's ~ 1)(~2"/la') '5 ~2) to form the functions Srr~b(q ) 
shown in Fig. 10. It is obvious, since (gUy _ qUqU/q2) is indempotent, (gUp - 
qUqO/q2)(goU _ qpqV/q2) = (g~V _ qUqV/q2), that the functions S~4ab(q) have 
only a single pole at q2 = 0. In fact, we find 

S~A,l(q)=--i(g~u--qUq~'](]-~ ] _ ~~JA1(q2)/gl 
f JA'(qZ)JA~(qZ)J (3.21a) 

gig2 

(guv q#qVl (~ J-f-.. A'(q2)/e~ .~ 
S~A~(q) = - i  -- q2 J f2 ] (3.2Ib)  

-- g lg2  JA'(q2)JA2(q2)  
/ 

S ~A ,, (q ) = S ~ ,  (q ) = _ i (g~U q~Zq~' t [- f JA ' (q2 )JA 2 (q 2 ) /g j - - - - - ~  ~ t 

(3.21c) 

t Note that, from equation (2.25a),JA(0) < 0 sinceg > 0, (i.e. it is non-zero and 
finite). 
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and it should be clear from Fig. 10 that the pole at qZ = 0 in equations (3.2) 
comes from the same massless boson in all four cases. The denominator 
(1 - (f2/glg2)JA~(q2)J.%(q2)) of  the ' form-factor '  is different from that in 
equations (3.9) and (3.10). This is because in this section we have ignored 
the axial-vector coupling of loops of  the same particle. If, in Section 3B, we 
had approximated the kernels K l l  and K22 by the pseudoscalar interaction 
only, then this denominator would have occurred in the form factors of  the 
axial-vector vertices. It  still gives two poles, of  the same general kind as the 
denominator of  Section 3B (see Fig. 8). 

Srr~t (q)  = F -  - r '  + F . . . . . . . . .  : -  - r '  + . . . .  yys  yy5 

Srr~z(q) = r c=--=- r '  + r c : = - -  --===:, p '  + . . . .  yys  yys  

S r r ~ 2 ( q )  = r . . . . . . .  F '  + F . . . . . . . . .  ~ ' r  + . . . .  y~,s yy5 y-l,s yy5 

Sr r :~ tq )  = r . . . . . . .  r '  + r . . . . . . . . . . . . . .  r '  + . . . .  .fy5 yy5 y-yS yy5 

Figure 10.-The functions Srr'l~(q), Srr;,(q),Srr',,(q), and Srr;,(q).  

On evaluating S~,eab(q ) we find, since (qU/q2)(guv - quqv/q 2) = O, that only 
the first terms in the series for S~,p l~(q) and S~p~(q) contribute, and that 
S~p,~(q) is zero: 

im i qU 
S ~ , , ( q )  = e ~ , , ( q )  = g l q  z (3.22a) 

s~,,(q)= P~,==(q) = i ~  " (3.22b) 

s ~ l = ( q  ) = 0 = s ~ = , ( q )  ( 3 . 2 2 c )  

with similar expressions for S~Aab(q)" The fact that the poles at q2 = 0 in 
equations (3.22a) and (3.22b) come only from streams of pseudoscalar bubbles 
of  particles 1 and 2 respectively does not invalidate our claim that there is 
only one masstess boson in the theory. It is just that in the particular Green 
functions S.~e,~(q) and S~p~(q) there is no explicit mixing. But in any process 
to which they contribute, e.g. meson exchange in the process 21 -* 21, there 
will also be a contribution from S~.2(q)  in which explicit mixing occurs. 

We find, on evaluating S~,ab(q), t}{at all terms except the first are zero, 
and so 

i 
Spp,,(q) = PPt',(q) = - 4glq211(q2) (3.23a) 

i 
Spp~(q) = Ppp~(q) = -  4g2q212(q2 ) (3.23b) 
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ifm t m 2 
- (3.23c) SPG~(q)=SPP2,(q) glgzq 2 

All terms have a single pole at q2 = 0, but explicit mixing occurs only in 
Spp,~ (q) and Spp~,(q). 

We have thus shown that in all the Green functions SPr~b(q) which are 
non-zero there is a single pole at q2 = 0 coming from one massless pseudo- 
scalar meson. Note incidentally, that Umezawa (1965a, 1965b) has shown 
that the axial-vector current ~a7~7 s ~a can be written in terms of the physical 
fields t~ (ma) (of the massive fermion) and Ca (of the massless pseudoscalar 
meson) as (guy _ 3u Ov/E]) ~(arna)TvT5 t~ (ama) + CaOl~ 9~a (where Ca is a certain 
constant). So, as far as interactions between the two pseudoscalar mesons are 
concerned, the Lagrangian (3.1) gives rise to an effective Lagrangian of the 
same form as equation (t .3). 

The single massless pseudoscalar particle can then presumably be removed 
from the theory by coupling a massless axial-vector gauge field to either or 
both of the fermions. The gauge field then acquires a mass by the Higgs 
mechanism as described by Freundlich & Luri4 (1970) and Aurilia et aL 
(1972) (see also Jackiw & Johnson (1973) and Cornwall & Norton (1973)). 
In our theory, if the gauge field is coupled to say particle 1, then it will 
acquire a mass by having Sff~4,,(q) as its 'vacuum polarisation tensor'. We have 
not, however, studied this question yet. 

4. Conclusion 
We have demonstrated a new way for reducing from two to one the 

number of massless Nambu-Goldstone bosons which occur when two sym- 
metries are spontaneously broken. The method is to allow mixing between 
the Goldstone bosons. In the model considered, the two unstable axial-vector 
mesons, which are present in the theory even when there is mixing ( f =  0), 
change their form when we allow mixing ( fq :  0), the one with larger mass 
becoming more massive, and the one with smaller mass becoming less massive. 
We note that if we add another Nambu-Jona-Lasinio field to the Lagrangian 
density equation (3,1) with a mixing term of the form say h(~27u3, 5 qJ2) x 
(~-37~3 '5 ~3) then the three chiral symmetries of the theory are realised by 
only one massless pseudoscalar boson as can be seen by considering the 
diagram of Fig. 11 which is equal to 

gU qUqV~ fh j , 2 , j  , 2 , j  , 2, py4y4,(q)PAA~po(q)p~y%(q)=_i v _  -q2 _ ] ~  A,(q ) A~tq ) A3(q ) 
(4.I)  

On summing all possible string diagrams with an axial.vector particle 1 vertex 
at one end, and an axial-vector particle 3 vertex at the other, we would obtain 

yys T.r.5 

Figure t 1 .-The coupling of three strings of pseudoscalar bubbles in the theory with 
three Nambu-Jona-Lasinio fields. 
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a Green function with a single pseudoscalar pole at q2 = 0 and three poles 
corresponding to axial-vector mesons. (Exactly similar considerations apply 
to the mode] of equation (I .3) when we add an extra field ~3 with mixing 
term h (~2)- (~3)7- Thus we apparently can have any number of Narnbu- 
Goldstone symmetries realised by only one massless spin-zero boson, if we 
allow mixing between them. 

As for physical applications,t we cannot think of  any off hand, but we may 
remark that the ideas expressed in th~ paper appear to be a useful tool to 
keep in the workshop when model-building. Another point we would like to 
emphasise is the natural appearnace to tachyons in mixing theories with 
large coupling constants. Some people are disturbed by the appearance of  
such fields in the 'undisplaced' form of  the models of  Goldstone (1961) and 
Higgs (1966), but  it seems to us very significant that a Lagrangian of  the type 
mentioned in footnotCf (p. 123), which describes such an everyday occurrence 
as w - q5 mixing, in the limit o f  large tg I gives a tachyon. 

Acknowledgement 

I thank Dr. D. J. Wallace for an interesting conversation during the pre- 
liminary stages of  this work. 

Appendix A 

In this Appendix we shall list a few o f  the expressions used in evaluating 
the bubble graphs and for converting them into dispersion integrals. 
1. An Expression for 

p2 d4p 
f ( ( p  _ ½q)2 _ mZ)((p + ½q)2 _ m 2) (2rr)4 

The expression 

d4p p2 
(-~ 2 __ m2)((p + ½q)2 __ m 2) 

= ( d4p ((to _ q)2 _ m 2) ( d4P 2 (p - ½q)Z (A.1) 
• ] ( -~--  q 7  Z m-~(p2 _---f--mZ ) - j~- q) Zm2S- ~ _ m 2) 

"~ It may be of interest to note that the original inspiration for this paper was the 
author's naive belief that a crystal with two diffexent atoms per unit cell is an example 
of a system with two spontaneously broken symmetries giving rise to one massless boson 
(the acoustical phonon) and one massive boson (the optical phonon). I-Iowev~, this system 
is descrlbe~ by a Lagianglan density whose relatlvTstle analogue as ~ = ~(a~ol) + ~(a~o2) 
g(~ol - ~02) and is invariant only under one displacement transformation: 



TWO NAMBU-GOLDSTONE SYMMETRIES: ONE MASSLESS BOSON 

where  we  have displaced the integrat ion variable p -> p - ½q in the second 
integral. On adding the numera tors ,  this gives 

129 

~l~p 
f p2 _ m z - J ((p _ ½q)2 _ m 2 ) ( f p  + ½q)2 _ m ~) 

f d4p(-p,  q + ~q~ - m ~) 
= ( ( p  __ q ) 2  __ m 2 ) ( p 2  _ m 2 )  

(A.2) 

and on displacing the integrat ion variable back  again p - + p  + ½q, and using 
the fact  tha t  fd4pf(p) = 0 for f ( - p )  = - f ( p ) ,  we obta in  

d4p p2 
f p2 _ m2 - f d4p ((p _ ½q)2 _ m2) ( (p  + ½q)2 _ m 2) 

= - -  m o ( ( P  - -  ½ q ) 2  _ m Z ) ( ( . p  + ½ q ) :  _ m z )  

which,  on rear rangement ,  gives 

p2 d4p 
f ( ( p  _ ½q)2 _ mZ)((p + ½q)2 _ m 2) (27r)4 

(2~.)4 p2 __ m 2 -- -- m2 

f 1 d4p 
x ((p _ ½q)2 _ m2) ( ( p  + ½q)2 _ m 2) (2rr)4 

which  we rewrite as: 

p2 d4p 
f ( ( p  -- lq )2  __ m2) ( (p  + ½q)2 _ m 2) (27/.)4 

- (2704 of pZ _ m 2 
(A.4) 
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2. An Expression for f d4pf(p, q)pUpV in Terms of One Unknown Function 

It is of course clear that fd4pf(p, q)pUpV is zero for f ( - p .  q) = - f ( p .  q). 
For f ( - p .  q) = +f(p. q) the integral must be of the form 

f d4pf(p, q)pUpV = A(q2)qUqV + B(q2)gUV (A.5) 

where A(q 2) and B(q 2) are unknown functions. On contracting indices, we 
find 

f d4pf(p, q)p2 = A(q2)q2 + 4B(q2) (A.6) 

which therefore gives: 

f d4pf(p, q)pUpV = ¼gUU 

which is the required expression. 

f d4pf(p, q)p2 + A(q2)(q#qV _ ¼q2gU~,) 
(A.7) 

3. Dispersion Integrals 

A Feynman integral can be expressed as a dispersion integral by using the 
Cutkosky rules (Cutkosky, 1960) to obtain the discontinuity across the real 
axis. These are the same as the Feynman rules except that instead of  a 
propagator denominator 1/(/) 2 - rn 2 + ie) we have a factor 2niS(p 2 - m2). 
Hence, to express I(q 2) (which physically is the Feynman integral for a loop 
with spin zero particles of mass m as internal lines) as a dispersion integral, 
we first find discI(q2): 

( d4P 8((/? disci(q2) = (21ri)2 J ~ _ ½q)2 _ m2)6((p + ½q)2 _ m 2) (A.8) 

which is most easily evaluated in the frame where qU = ((q2)1/2, 0) to give: 

disci(q2 ) _ (2hi) 2 7r (1 - 4rn2/q2) 1/2 (A.9) 
(2~r) 4 2 

and, on writing a dispersion relation for i(q2) with this discontinuity, we 
obtain: 

A 2 

i J -g-~ _ ~ )  dt~ 2 (A.10) 
f (1 - 4 r n  2" 2-1/2 

i(q2) 

4rn 2 

where we cut of f  the integral at ~2 = A 2 since it is logarithmically divergent.t 

t The cut-off A 2 is not equal to the cut-off A 2 ment ioned in Section 2A. 



T W O  N A M B U - G O L D S T O N E  S Y M M E T R I E S :  O N E  M A S S L E S S  B O S O N  131 

To find fd4p(p 2 - m2) -1 as a dispersion integral, we note from equation 
(2.10) that it is just equal to -47r4]pp(0). The discontinuity of Jpp(q~) is 
given by: 

f disc ]pp(q2) = (27ri) 2 ~ (-4pZ + q2 + 4m2)6((p - ½q)2 - m2) 

x 6((p + ½q)2 _ m 2) (A.t t )  

which, evaluation in the frame where q,  = ((q2)V2, 0), gives 

(27ri) 2 2,. 4rnZ/q2)l/2 disc jpp(q2) = (~)4 7rq ti  - (A.12) 

so that 

i 
]pp(q2) = 87r --~ 

We therefore find 

a4p 
f p2 _ m 2 

A' 

f 
4 m  2 

K2(1 -- 4m2/~2) 1/2 
K2 _ q 2  dt~ 2 (A. 13) 

_ 7/'2 
-~ f (l-4rn2/•2)t/2d•2 (A.14) 

4 m  2 

so that in terms of the dispersion integral the self-consistent mass equation 
(2.5) reads 

A2 

1= t (1-4m2/t~2)l/2 dK2 (n.15) 
4 m  2 

Equations (A.10) and (A.15) are the only dispersion integrals needed in this 
paper. Itis, of course, also possible to calculate the discontinuity of each 
bubble J r r ' (q )  directly, as was done by Nambu and Jona-Lasinio. 

Appendix B 

In this Appendix, we shall exhibit the poles of the form factors in equations 
(3.9) and (3.10), i.e. the zero of the function D(q 2) of equation (3.11), using 
the Nambu-Jona-Lasinio (substracted) form for JAa(q2). That is, with the 
notation of Section 2B, we have 

s(sub)(q z) = -- ((Jv(q z) - Jv(O)) + J~ (q2)) : JA (q2) + Jv(O) (B. 1) 

On using equations (2.20) and (2.25) we obtain 

A ~ 
j(sub)(q2) _ 12rr 2 g  f (l -- 4m2/K2) I / 2 ~ 2 ~ _  (6m2_ q2 1 + 2m2~K2 ]]dK 2 

4 m  2 (B.Za) 
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A2 

1 - JA(SUb)(q2) = ~ g  f 

4m 2 

( !  - 4rn2/t~2) 1/2 
K2_q 2 

m 2 
( B . 2 b )  

So substituting equations (B.2) into equation (3.11), and looking at the inte- 
grand of  the double integral, we see that it will be zero when 

[ 3(K12 . . . . .  2m12) 2q2( 1 - - ~ ) ] [  3(/~2 2m22) 2q2( 1 7 ] ]  m21] 

- f 2  [ 6 m I 2 _ q 2 ( l + 2 m ' 2 ~ ] [ 6 m , - - q 2 ( l + 2 m ~ t ]  
g lg2  K12 ]] K2 ]] (B.3) 

The parabolas which constitute the right-hand side and left-hand side of  
this equation are plotted in Fig. 1 2 assuming without loss of generality that 
m 12 < rn 2.  It is seen that, asf2/glg2 increases from 0 to 0% one pole slowly 
moves from q2 = 3(K 12 - 2m 12)/2(1 - m 12/K 12) to q2 = 6m 22/(1 + 2m ~/K 22), 
whilst the other rapidly moves out from q2= 3(g 22 -- 2m 2)/2(1 - m 2/K 2 )  
to 0% and then moves in again from _oo to q2 = 6m12/(1 + 2m12/Kt2). This 
seems to us to be a somewhat unphysical behaviour and justifies our assertion, 
made in Section 2B, that one should not put Jv (0 )  = 0 in this theory. 

\ 
\ 

\ 

'•k•] \ /R.H.S. for 
\\ ?arge f21glg2// 

I \ \ ~ ' ' "  
,~ , .  ~ / ~'~ R.H.S:for 

' / S '  
" '  / / / / /  ; 

;_ A ' M L  \ . . . . . .  _~ ± 

' 4ml 2 % T - ~ ///'q2__--~_' 
~ "  R.H.S.for 

zero f2/glg 2 
Figure 12.-Plot of equation (B.3), showing the two solutions (denoted by crosses) for 
f2/g lg 2 = O, f 2 /g lg2 = srrlall, f 2/g lg 2 = large. 
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